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Abstract. The critical behaviour of anisotropic Heisenberg models with two kinds of
antiferromagnetically exchange-coupled centres are studied numerically by using finite-size
calculations and conformal invariance. These models exhibit the interesting property of
ferrimagnetism instead of antiferromagnetism. Most of our results are centred in the mixed
Heisenberg chain where we have at even (odd) sites a spin-S (S′) SU(2) operator interacting
with a XXZ-like interaction (anisotropy1). Our results indicate universal properties for all these
chains. The whole phase, 1> 1 > −1, where the models change from ferromagnetic(1 = 1) to
ferrimagnetic(1 = −1) behaviour is critical. Along this phase the critical fluctuations are ruled
by a c = 1 conformal field theory of Gaussian type. The conformal dimensions and critical
exponents, along this phase, are calculated by studying these models with several boundary
conditions.

1. Introduction

The critical properties of one-dimensional regular Heisenberg spin chains with one kind of
antiferromagnetically exchange-coupled spins have been extensively studied in the literature.
The prototype of these models is the anisotropicS = 1

2 Heisenberg model or XXZ chain
[1]. This model is exactly integrable with a critical line of continuously varying critical
exponents as we change the anisotropy(1), bringing the model from the ferromagnetic
(1 = 1) to the antiferromagnetic(1 = −1) isotropic points. With the advance of the
conformal invariance ideas [2] the whole operator content of this model was obtained
[3, 4]. The critical fluctuations are governed by a Gaussian-type conformal field theory
with conformal anomalyc = 1 and, moreover, the underlying currents satisfying a U(1)
Kac–Moody algebra [5].

The extension of the XXZ chain to higher spinsS > 1
2 attracted considerable attention

after Haldane [6] conjectured that, for the isotropic antiferromagnetic point(1 = −1), the
model is critical or not depending ifS is half-odd-integer or integer, respectively. Consistent
with this conjecture, numerical calculations [7–9] indicate that in the case of half-odd-integer
spins the models are critical in the whole range of anisotropies(1 > 1 > −1) from the
ferromagnetic to the antiferromagnetic point. In the case whereS is integer, a critical line
starting at the ferromagnetic point ends at1c before the antiferromagnetic phase(1c > −1)

entering the massive Haldane phase [7–9]. For all spins the massless phases are ruled by a
c = 1 Gaussian-like conformal field theory [8].

In this paper we extend these studies by studying a quantum chain in which two types
of antiferromagnetically exchange-coupled spinsS and S ′ are located at alternate sites.
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When S 6= S ′, according to a theorem due to Lieb and Mattis [10], the isotropic model
(1 = −1) exhibits ferrimagnetic order, with a(S − S ′)L

2 -degenerate ground state, where
L is the chain length. Consequently as we vary the anisotropy the model goes from the
ferromagnetic point(1 = 1) to the ferrimagnetic point(1 = −1). We studied these
models for(S, S ′) = ( 1

2, 1) and (S, S ′) = ( 1
2, 3

2), using finite-size scaling and conformal
invariance [2]. To supplement our studies we considered two other anisotropic models that
also exhibit ferrimagnetic behaviour at the isotropic point. Our studies show that all these
models between the two (ferromagnetic and ferrimagnetic) isotropic points 1> 1 > −1
have a universal Gaussian critical behaviour with central chargec = 1. In this massless
phase the critical exponents exhibit a model-dependent variation with the anisotropy.

The paper is organized as follows. In section 2 we define the(S, S ′)-Heisenberg chain
and review some results obtained from conformal invariance in the model withS = S ′.
In sections 3 and 4 we present our numerical results for the(S, S ′)-Heisenberg model and
related models. Finally in section 5 we present our general conclusions.

2. The model and conformal invariance relations

The mixed Heisenberg quantum chains are defined by attaching an SU(2) spin-S at
the odd sites(σi = (σ x

i , σ
y

i , σ z
i ); i = 1, 3, 5, . . .) and a spinS ′ at the even sites

(Si = (Sx
i , S

y

i , Sz
i ); i = 2, 4, 6, . . .). The Hamiltonian on anL (even) site chain, with

periodic ends, is defined by

H = −
L/2∑
i=1

(σ x
2i−1S

x
2i + σ

y

2i−1S
y

2i + 1σz
2i−1S

z
2i ) (1)

where1 is the anisotropy constant. This Hamiltonian, like the standard spin-S XXZ chain
(S = S ′), has a U(1) symmetry due to its commutation with thez component of the total
spin

Sz =
L/2∑
i=1

(σ z
2i−1 + Sz

2i ). (2)

For 1 > 1 the model is massive and ferromagnetic with a double degenerate ground state
corresponding to the two fully ordered states withSz = ±L

2 (S + S ′). At 1 = 1 the lowest
energy in all U(1) sectors(

Sz = −L

2
(S + S ′), −L

2
(S + S ′) + 1, . . . ,

L

2
(S + S ′) − 1,

L

2
(S + S ′)

)
are degenerate, rendering a ferromagnet ground state with total spinL

2 (S+S ′) and a massless
spectra with a quadratic dispersion relation. For 1> 1 > −1 the ground state is single or
double degenerate, depending on if|S−S ′|L

2 is integer or half-odd-integer and belongs to the
sectors withSz = 0 or Sz = ± 1

2, respectively. At1 = −1 the lowest energies in the sectors
whereSz = −L

2 |S − S ′|, −L
2 |S − S ′| + 1, . . . , L

2 |S − S ′| − 1, L
2 |S − S ′| become degenerate

and we have ferrimagnetic order [10]. For1 < −1 the ground state is double degenerate,
occurring in the sectors withSz = ±L

2 |S −S ′|, and we expect a massive behaviour as in the
standardS = S ′ XXZ chain. In order to illustrate the spectral dependence on the anisotropy
1, in figure 1 we draw, in schematic form, the location of the lowest eigenenergies of (1)
in the variousSz sectors.

Our analysis indicates that in the whole region 1> 1 > −1 the model is critical, like
the S = 1

2 XXZ model (S = S ′ = 1
2). We assume that the Hamiltonian (1), like most
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Figure 1. Schematic values of the lowest eigenenergy in a sector with magnetizationSz of the
Hamiltonian (1). The ground-state energy isE0 and(S − S ′) L

2 is an integer.

statistical mechanics quantum chains are conformally invariant in its critical regime. Under
this assumption the machinery arising from conformal invariance tells us that, for each
primary operator [2, 11]Oα with dimensionxα and spinsα in the Virasoro operator algebra
of the infinite system, there exists an infinite tower of states, in the quantum Hamiltonian,
for a periodic chain ofL sites, whose energy and momentum asL → ∞ are given by

Eα
j,j ′ = E0(L) + 2π

L
v(xα + j + j ′) + o(L−1) (3)

and

P α
j,j ′ = 2π

L
(sα + j − j ′) (4)

where j, j ′ = 0, 1, . . .. Here E0(L) is the ground-state energy andv is the velocity of
sound, which can be determined by the energy-momentum dispersion relation or from the
difference among consecutive energy levels in a same conformal tower. The finite-size
corrections of the ground-state energy also give a way to calculate the conformal anomaly.
For periodic chains, the ground-state energy behaves asymptotically as [12]

E0(L)

L
= e∞ − πcv

6L2
+ o(L−2) (5)

wheree∞ is the ground-state energy per site in the bulk limit.
In the case whereS = S ′ a critical phase appears [7–9] in (1) for anisotropies

1 > 1 > 1c(S), where due to the Haldane conjecture [6],1c = −1 or 1c > −1 depending
if S is half-odd-integer or not. This massless phase is described by a U(1) conformal field
theory with central chargec = 1 [8]. The anomalous dimensions,xα, appearing through
(3) in the U(1) sectorSz = n of the Hamiltonian (1) with periodic ends are given by

xn,m = n2xp + m2

4xp

n, m = 0, ±1, ±2, . . . (6)

where xp depend onS and 1. For S = S ′ = 1
2 we have the exact dependence [3, 4]

xp = (π − cos−1(−1))/2π . Although the model is not integrable forS = S ′ > 1
2,
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numerical calculations indicate the conjecture [8]

xp = (π − cos−1(−1))/4πS for − 1 < 1 . 0.

Beyond the dimensions (6) other integer dimensions also appear in the sector with
Sz = n = 0. This fact indicates that the underlying conformal field theory satisfies a
larger algebra than the Virasoso conformal algebra, namely, a U(1) Kac–Moody algebra
[5, 8]. The dimensions (6) correspond to operatorsOn,m and the number of its descendants
will be given by the product of two U(1) Kac–Moody characters. The dimensions (6)
indicate that the operatorsOn,m correspond to the Gaussian model operators [13] composed
of a spin-wave excitation of index,n, and a ‘vortex’ excitation of vorticity,m.

Other interesting properties of thesec = 1 critical phases appear when we consider
these chains with more general boundary conditions, compatible with its U(1) symmetry,
i.e. by preserving the total spin,Sz, as a good quantum number. Two of these conditions
are, thex − y twisted boundary conditions

Sx
L+1 ± iSy

L+1 = e±i8(Sx
1 ± iSy

1 ) (7)

Sz
L+1 = Sz

1 (8)

where8 is an arbitrary angle, and free boundary conditions

Sx
L+1 = S

y

L+1 = Sz
L+1 = 0. (9)

The net effect of the boundary angle,8, in the dimensions (6) is to shift the spin-wave
index by an amount [3, 8]8/2π ,

xn,m+8/2π = n2xp + (m + 8/2π)2

4xp

. (10)

In a semi-infinite lattice the correlation functions involving lattice points near the surface
have a power-law decay distinct from the case where the points are away from the surface
(bulk behaviour). These correlations are ruled by the surface exponentsxs . These exponents
can be obtained from the finite-size corrections of the mass-gap amplitudes of finite chains
with free ends. Instead of (3) and (4), to each surface exponent of the semi-infinite system,
at the critical point, there exists a set of states with energies given by [11]

E(F)
r = E

(F)

0 (L) + πv

L
(xs + r) + o(L−1) (11)

whereE
(F)

0 (L) is the ground-state energy of theL-site chain andr = 0, 1, 2, . . .. Instead
of (5) we have [12]

E
(F)

0 (L)

L
= e∞ + f∞

L
− πcv

24L2
+ o(L−2) (12)

wheref∞ is the bulk limit of the surface energy. The study of (1) withS = S ′ and free
ends [8, 14] shows that, in the critical region, for each sectorSz = n there appears only one
conformal tower associated to the dimensions

xs(n) = 2n2xp n = 0, 1, 2, . . . (13)

with the multiplicity of its descendants given by the character of a single U(1) Kac–Moody
algebra [8, 15].
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Table 1. Estimates for some values of the anisotropy,1, of the conformal anomaly of the
(S, S′)-Heisenberg chain (1) for(S, S′) = ( 1

2 , 1) and(S, S′) = ( 1
2 , 3

2).

(S, S′) 1 = .8090 1 = 0.5 1 = 0 1 = −0.5 1 = −0.7071

( 1
2 , 1) 0.93± 0.05 1.01± 0.01 1.03± 0.04 1.01± 0.01 0.9 ± 0.1

( 1
2 , 3

2) 1.00± 0.01 0.99± 0.01 1.000± 0.005 1.00± 0.01 0.9 ± 0.1

3. Results for the mixed Heisenberg chains

We calculate numerically the eigenspectra of the Hamiltonian (1) by using the Lanczos
method in the cases where(S, S ′) = ( 1

2, 1) and (S, S ′) = ( 1
2, 3

2) up to lattice sizesL = 20
and L = 16, respectively. Our results, for several boundary conditions, indicate that in
the whole region, 1> 1 > −1, the model is gapless and conformally invariant. The
ground state in this region will have the lowest possible value of|Sz|. It is non-degenerate
with Sz = 0 if L

2 |S − S ′| is integer and is doubled degenerate withSz = ± 1
2, otherwise.

Consequently in order to obtain a uniform convergence of our finite-size results we consider
in the case(S, S ′) = ( 1

2, 1) only lattice sizes which are multiples of 4.
Let us consider initially the case of periodic chains. The model is invariant under

translation by a unit cell with two spins, with momentump = 4π
L

l(l = 0, 1, . . . , L
2 − 1). In

order to calculate the conformal anomaly and exponents from equations (3)–(5) we should
estimate the sound velocity. As in theS = S ′ = 1

2 case the lowest eigenenergy with non-
zero momentum (moduloπ ) belonging to the ground-state sector is associated to a primary
spin-1 operator with dimension equal to unity for all values of1. Using equation (3) we
obtain an estimate for the sound velocity

v(L) =
(
E4π/L − E0(L)

)
L

2π
(14)

whereE0(L) is the ground-state energy andE4π/L is the lowest eigenenergy of a state with
momentum 4π/L(modπ). Using (14) the conformal anomalyc is obtained by extrapolating
the numerical sequence obtained from (5). In table 1 we show, for some values of1, our
estimates forc in the two cases(S, S ′) = ( 1

2, 1) and (S, S ′) = ( 1
2, 3

2). All the extrapolated
results reported in this table, as in the subsequent ones, are calculated by using the alternating
ε-algorithm [16], which is a variant of the van den Broeck–Schwartz method [17]. The
errors are roughly estimated from the region of stability of these approximants. It was not
possible to obtain reliable results near the isotropic points1 = 1 and1 = −1. This happens
because, as near the ferromagnetic models withS = S ′ [8], the sound velocity decreases
towards zero as we tend towards the isotropic point (the energy-momentum dispersion
relation changes from linear to quadratic). Our results indicate that we have a conformal
anomalyc = 1 in both cases and we believe that this is the general case for arbitrary
S 6= S ′, since the spectrum (see figure 1) shows the same essential features independently
of S andS ′ being integer or half-odd-integer. Moreover the vanishing of the sound velocity
as we tend toward the ferromagnetic(1 = 1) and ferrimagnetic(1 = −1) points indicate
that the critical fluctuations around the ferrimagnetic point are similar to those near the
ferromagnetic point. As we see in table 1 the results for(S, S ′) = ( 1

2, 3
2) are slightly better

than those of(S, S ′) = ( 1
2, 1). This is due to the fact that for(S, S ′) = ( 1

2, 3
2) the number

of terms in the finite-size sequences are larger sinceL can be an arbitrary even number.
The conformal dimensions are calculated by using (3) and (14). For example in the

(S, S ′) chain the lowest energy,En, in the sector with total spin,Sz = n, is associated
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Table 2. Extrapolated values of the finite-size sequences (15) for the Hamiltonian (1) with
(S, S′) = ( 1

2 , 1) and some values of the anisotropy1. The extrapolations in the third and

fourth column are obtained from the sequencesx
1/2,1
2 (L)/x

1/2,1
1 (L) andx

1/2,1
1 (L)/x

1/2,1/2
1 (L),

respectively. The values ofx1/2,1
1 in the fifth column are obtained from standard finite-size

scaling (see equation (18)).

1 x

1
2 ,1

1 x

1
2 ,1

2 x

1
2 ,1

2 /x

1
2 ,1

1 x

1
2 ,1

1 /x

1
2 ,

1
2

1 1 − γp/2ν

0.917 2 0.0414± 0.0001 0.165± 0.001 3.9996± 0.0005 0.664± 0.005 0.038
0.809 01 0.0639± 0.0005 0.255± 0.001 3.9999± 0.0005 0.653± 0.008 0.069
0.5 0.1041± 0.002 0.415± 0.001 3.999± 0.005 0.626± 0.001 0.104
0.173 6 0.1302± 0.0005 0.521± 0.004 3.99± 0.01 0.584± 0.002 0.129
0 0.139± 0.001 0.554± 0.002 3.999± 0.004 0.554± 0.002 0.138

−0.5 0.136± 0.001 0.547± 0.005 4.01± 0.01 0.40± 0.01 0.134
−0.707 1 0.105± 0.005 0.44± 0.02 4.01± 0.01 0.31± 0.01 0.111
−0.901 0 0.035± 0.005 0.15± 0.02 3.99± 0.02 0.11± 0.01 0.066

with the dimensionxS,S ′
n , which is calculated from the asymptotic(L → ∞) value of the

sequence

xS,S ′
n (L) = En(L) − E0(L)

2πv(L)
(15)

wherev(L) is given by (14). In tables 2 and 3 we show our results forn = 1, 2 and some
values of the anisotropy. We see from these tables that for all values of the anisotropy, the
extended relation

xS,S ′
n = n2x

S,S ′
1 (16)

holds. These dimensions are similar to the Gaussian dimensions,xn,0, appearing in (6), on
identifying xp = x

S,S ′
1 . Different from the critical regime in the homogeneous spin case

S = S ′, whenS 6= S ′ the dimensions,xS,S ′
1 , increase as we depart from the ferromagnetic

point, but around1 . −0.5 it starts to decrease again and we have small values ofxp near
the ferrimagnetic point, as we normally see near the ferromagnetic point. The small values
of the exponents,xS,S ′

1 , near the ferromagnetic and ferrimagnetic points is the signature of
the long-range ordered ground state at the isotropic points. The fourth column of these
tables also shows that near the ferromagnetic pointx

S,S ′
1 = x

1/2,1/2
1 /(S + S ′), which give us

x
S,S ′
1 = π − cos(−1)

2π(S + S ′)
1 → 1. (17)

This result, when compared with the conjectured [8] results forS = S ′, indicate that
near the ferromagnetic point we have essentially a Heisenberg model with effective spin
(S + S ′)/2. On the other hand the degeneracy of the ground state at the ferrimagnetic
point (1 = −1) induce us to expect near this point an effective Heisenberg ferromagnetic
chain with effective spin(S − S ′)/2. However, we are not able to make a conjecture as in
equation (17).

We also made an independent calculation of the exponentsx
1/2,1
1 by using standard

finite-size scaling [18]. This exponent is related to the ratio of the ‘electric’ susceptibility
γp [19] and correlation-length exponentν, by the relation

γp

ν
= 2(1 − x

1/2,1
1 ). (18)
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Table 3. Extrapolated values of the finite-size sequences (15) for the Hamiltonian (1) with
(S, S′) = ( 1

2 , 3
2) and some values of the anisotropy1. The extrapolations in the third and fourth

column are obtained from the sequencesx
1/2,3/2
2 (L)/x

1/2,3/2
1 (L) and x

1/2,3/2
1 (L)/x

1/2,1/2
1 (L),

respectively.

1 x

1
2 ,

3
2

1 x

1
2 ,

3
2

2 x

1
2 ,

3
2

2 /x

1
2 ,

3
2

1 x

1
2 ,

3
2

1 /x

1
2 ,

1
2

1

0.917 2 0.0310± 0.0005 0.124± 0.002 3.9995± 0.0005 0.50± 0.02
0.809 01 0.047± 0.001 0.189± 0.002 4.001± 0.001 0.47± 0.02
0.5 0.076± 0.002 0.301± 0.002 4.0000± 0.0001 0.44± 0.01
0.173 6 0.0914± 0.0001 0.3661± 0.0002 4.0001± 0.0001 0.412± 0.001
0 0.0959± 0.0001 0.384± 0.001 4.0000± 0.0001 0.383± 0.001

−0.5 0.089± 0.002 0.357± 0.003 4.00± 0.04 0.26± 0.01
−0.707 1 0.071± 0.002 0.28± 0.01 3.98± 0.01 0.19± 0.01
−0.901 0 0.031± 0.001 0.11± 0.01 3.99± 0.02 0.065± 0.008

The ‘electric’ susceptibility is the response of the system to a staggered transversal
field. This susceptibility,χξ

L, is calculated by adding an ‘electric field’ interaction
ξ

∑
i (gAσ x

i + gBSx
i+1) in (1)

χ
ξ

L = ∂2E0(ξ)

∂ξ2

∣∣∣∣
ξ=0

(19)

whereE0(ξ) is the ground-state energy in the presence of the ‘electric’ field. The Landé
factorsgA and gB produces the staggering effect of the transverse ‘electric’ field. In the
isotropic caseS = S ′ we must choosegA/gB 6= 1, otherwise it will produce the effect of
a uniform transverse field, which is not related with the exponentγp. In the caseS 6= S ′

our results show that a similar effect also occurs and in order to calculateγp we should
considergA/gB 6= rc. For S = 1

2 and S ′ = 1, rc changes fromrc = 2 to rc = 2.66
as the anisotropy changes from the ferromagnetic point(1 = 1) to the ferrimagnetic one
(1 = −1). These points are probably related to the compensation mechanism which usually
happens in ferrimagnetic ordered models when temperature effects are taken into account
[20]. In the bulk limit, χ

ξ

L ∼ Lγp/ν , the extrapolation of the finite-size sequence obtained
by choosinggA = 0 andgB = 1 gives from (18) the results in the last column of table 2.
In this case, since we calculate lattices up toL = 16, it is difficult to obtain an error
estimate through the alternatingε-algorithm [16]. The results presented are in reasonable
agreement with those derived by using the conformal invariance relations. Beyond the
dimensions presented in tables 2 and 3 our results also indicate other dimensions which
would correspond toxn,m in (6) with m 6= 0. Instead of presenting these dimensions we
show in table 4 the lowest dimensionsx

S,S ′
8 obtained by calculating the(S, S ′) model with

the twisted boundary conditions given by (7) and (8). These dimensions are obtained from
the bulk limit extrapolations of the sequence

x
S,S ′
8 (L) = E8(L) − E0(L)

2πv(L)
(20)

whereE8(L) is the ground-state energy of the Hamiltonian (1) withL sites and boundary
conditions (7) and (8). The results given in table 4 indicate that

x
S,S ′
8 = (8/2π)2

4x
S,S ′
1

(21)
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Table 4. DimensionsxS,S′
1 (8) obtained from the bulk limit of the finite-sequences (20) obtained

from the Hamiltonian (1) with twisted boundary conditions (7) and (8) specified by the angles
8 = π and 8 = 4π

3 . The values in parentheses are the predicted ones obtained by using the

values ofxS,S′
1 estimated in tables 2 and 3 in (21).

1 = 0.8090 1 = 0.1736 1 = 0 1 = −0.5 1 = −0.7071

x

1
2 ,1

1 (8 = π) 0.93± 0.02 0.49± 0.01 0.46± 0.01 0.48± 0.01 0.58± 0.01
(0.978) (0.480) (0.4500 (0.460) (0.595)

x

1
2 ,1

1 (8 = 4π/3) 1.65± 0.05 0.86± 0.01 0.81± 0.01 0.84± 0.02 1.03± 0.02
(1.74) (0.853) (0.799) (0.817) (1.06)

x

1
2 ,

3
2

1 (8 = π) 1.26± 0.05 0.686± 0.002 0.657± 0.005 0.70± 0.01 0.90± 0.03
(1.33) (0.684) (0.652) (0.702) (0.880)

x

1
2 ,

3
2

1 (8 = 4π/3) 2.22± 0.05 1.222± 0.004 1.165± 0.005 1.25± 0.01 1.53± 0.04
(2.36) (1.216) (1.159) (1.248) (1.565)

wherex
S,S ′
1 is given in tables 2 and 3. These dimensions correspond to the dimensions

x0,8/2π in (10). The results presented in tables 2–4 clearly indicate that, in the whole
disordered regime,−1 < 1 < 1, the conformal dimensions are those of a Gaussian model.
The dimensions are given by (6) wherexp = x

S,S ′
1 is a continuous function of1 with some

of its values given in tables 2 and 3. We have also studied the(S, S ′) = ( 1
2, 1) model with

lattice sizesL = 4l + 2 (l = 1 − 4). In this case the ground state is degenerate as in
the standardS = S ′ = 1

2 XXZ chain with an odd number of sites [2] and we obtain the
dimensionsxn+1/2,m(n, m = 0, ±1, ±2, . . .).

For completeness, we also calculated the surface exponents of these chains. These
exponents are calculated from the eigenspectra of (1) with free boundary conditions. From
(11) the surface exponents,xS,S ′

s (n), associated with the state with lowest energy,E
(F)

n,0 , in
the sectorSz = n of the (S, S ′) chain can be estimated from the large-L behaviour of the
sequence

FS,S ′
(n, L) = E

(F)

n,0 − E
(F)

0,0

E
(F)

0,1 − E
(F)

0,0

(22)

whereE(F)
n,m is them excited state in the sectorSz = n. The estimator (22) was obtained by

assuming that as in theS = S ′ case, the first mass gap amplitude in the ground-state sector
is associated with a dimension equal to unity. Our results are shown in table 5 where we
clearly see the same type of extended relation as in (16), namely

xS,S ′
s (n) = n2xS,S ′

s (1). (23)

Comparing these results with those of tables 2 and 3 we obtain the relations (13) expected
in a Gaussian model

xS,S ′
s (n) = 2n2x

S,S ′
1 n = 0, 1, 2, . . . (24)

wherex
S,S ′
1 is the dimension which appeared in the periodic case.

4. Results for other related models of ferrimagnetism

Inspired by the results of the last section we will try to see if the general critical
features of the(S, S ′)-Heisenberg models can also be observed in other models exhibiting
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Table 5. Surface critical exponentsxS,S′
s (n) associated to the lowest eigenergies in the sectors

n = 1, 2 of the Hamiltonian (1) with(S, S′) = ( 1
2 , 1) and (S, S′) = ( 1

2 , 3
2) for some values of

1. These estimates are obtained from the sequences (22).

1 x

1
2 ,1

1 x

1
2 ,1

2 x

1
2 ,

3
2

1 x

1
2 ,

3
2

2

0.917 2 0.082± 0.002 0.330± 0.005 0.061± 0.001 0.245± 0.005
0.809 01 0.128± 0.001 0.513± 0.003 0.098± 0.003 0.392± 0.005
0.173 6 0.258± 0.002 1.036± 0.003 0.183± 0.001 0.73± 0.01
0 0.272± 0.005 1.106± 0.003 0.191± 0.001 0.766± 0.005

−0.5 0.266± 0.002 1.070± 0.005 0.181± 0.002 0.728± 0.005
−0.901 0 0.1086± 0.0005 0.440± 0.002 0.065± 0.005 0.260± 0.002

ferrimagnetism. In this direction we will study two other models defined on a bipartite
lattice as in figures 2(a) and (b). At each lattice point we attach a spin-1

2 operator which
interacts along the lines of figure 2 with interactions of XXZ type

H = −
L∑

〈ik〉
(σ x

i σ x
k + σ

y

i σ
y

k + 1σz
i σ z

k ). (25)

The first model, defined in the bipartite lattice of figure 2(a), we denoteABC and the
second one, in figure 2(b), we denoteAB2. The lattice sizeL is considered as twice the
number of lattice sites in the sublatticeA (in figures 2(a) and (b) L = 6). Both models,
at the isotropic ferromagnetic point,1 = 1, are fully ordered. At1 = −1 they show a
ferrimagnetic behaviour since the total number of spin variables in each sublattice is not
equal. As before the Hamiltonian has a U(1) symmetry and its Hilbert space is separated
in the σz-basis into block disjoint sectors labelled by thez-component of the total spin
Sz = ∑

i σ
z
i . The ground-state location in these sectors as well as its degeneracies on a finite

lattice for−1 6 1 6 1 are exactly like those shown in figure 1, on takingS = 1
2 andS ′ = 1.

Our numerical results for periodic boundary conditions indicate that both models are
disordered and massless in the whole regime 1> 1 > −1. The thermal effects of the
model AB2 at 1 = −1 are considered in [21]. We now report our results separately for
both models.

Figure 2. Lattices where (a) the ABC and (b) the AB2 quantum chains are defined. At
the circles we have spin-1

2 SU(2) operators and along the lines the interactions are given by
(25) (XXZ type). The HamiltonianAB2 is invariant under a local gauge transformation which
independently interchanges the spin operators inside a rectangle in (b).
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Table 6. Anomalous dimensions,xABC
n , associated to the lowest eigenenergies in the sector

n = 1, 2 of the modelABC, defined in figure 2(b), for some values of the anisotropy1. The
third and fourth column are calculated similarly as for tables 2 and 3.

1 xABC
1 xABC

2 xABC
2 /xABC

1 xABC
1 /x

1
2 ,

1
2

1

0.917 2 0.07± 0.01 0.27± 0.02 3.99± 0.02 0.86± 0.03
0.809 01 0.077± 0.003 0.31± 0.01 4.01± 0.01 0.84± 0.02
0.5 0.129± 0.002 0.51± 0.01 4.00± 0.03 0.78± 0.02
0.173 6 0.158± 0.003 0.635± 0.005 4.01± 0.02 0.71± 0.01
0 0.165± 0.002 0.667± 0.005 4.01± 0.02 0.66± 0.01

−0.5 0.152± 0.002 0.61± 0.01 3.99± 0.02 0.45± 0.01
−0.707 1 0.121± 0.002 0.486± 0.002 4.00± 0.02 0.32± 0.01
−0.901 0 0.05± 0.01 0.20± 0.01 3.99± 0.03 0.11± 0.01

4.1. ModelABC

Using equation (14) we observe, as in section 3, that the sound velocity approaches
zero as we tend towards the isotropic points1 = ±1. The conformal dimensions,
xABC

n (n = 1, 2, . . .), associated to the lowest eigenenergy in the sectorSz = n are obtained
by extrapolating the sequence (15) forL up to 16. Our results for some dimensions
and anisotropies are shown in table 6. As we see in this table, as in (16) the relation
xABC

n = n2xABC
1 also holds for the whole range of anisotropies 1> 1 > −1, with xABC

1
depending continuously on1. Since at1 = 1 we have the same ground-state degeneracy
as in the(S, S ′) = ( 1

2, 1) Heisenberg model we would expect an asymptotic behaviour, as
1 → 1, like (17) with S = 1

2 and S ′ = 1. However, the fourth column of table 6 tell
us this is not true. We have also studied this model with the twisted boundary conditions
(7) and (8) with results as predicted in (10), which clearly indicate an underlyingc = 1
Gaussian-field theory in the whole regime 1> 1 > −1.

4.2. ModelAB2

In this case, beyond the U(1) symmetry, we also have a Z(2) local gauge invariance
corresponding to an independent interchange of the spin variables located at points like
those shown in broken-lined rectangles in figure 2(b). Since we haveL/2 disjoint sectors
labelled by the eigenvaluesgl (±1) of the gauge operators

Gl = σi .σk + 1
4 l = 1, 2, . . . , L/2 (26)

where σi and σk are the spin-12 operators located at thelth rectangle, a sector having
gl = 1 will be spanned in a basis with three even combinations of the spin variablesσi

and σk located at the rectanglel. This means that inσ z-basis we should have the triplet
combination| + +〉, 1√

2
(| + −〉 + | − +〉) and | − −〉. On the other hand ifgl = −1 we

should have a singlet combination1√
2
(| + −〉 − | − +〉). It is not difficult to verify that

the interaction between spins in the sublatticeA with a given neighbouring retanglel with
gl = 1 (triplet) is exactly the same as in the(S, S ′) = ( 1

2, 1) Heisenberg interaction (see
(1)). In contrast, the interaction with a rectangle withgl = −1 (singlet) is zero. This implies
some interesting consequences. For a given U(1) sectorSz = n the eigenenergies of the
gauge sector withgl = 1 for all l = 1, 2, . . . , L/2 of the HamiltonianAB2 with periodic
ends will be exactly the same as theSz = n sector of the(S, S ′) = ( 1

2, 1) Heisenberg chain
(1), also with a periodic boundary condition. For general gauge choices we lose translation
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invariance since the operator (26) does not have this symmetry. However, for the gauge
choicesg1 = g2 = . . . = gL/2 = ±1, this invariance is recovered and we obtain the same
dimensions as in the(S, S ′) = ( 1

2, 1) Heisenberg model studied in section 3.
The eigenenergies in the sectors withgl = −1 of the AB2 model with periodic ends

will correspond to the composition of energies of the( 1
2, 1)-Heisenberg chains with free

boundary conditions and different lattice sizes. This exact correspondence, together with
the relation (12), implies that the lowest energy in these sectors, in the bulk limit, will
have a finite gap when compared with the ground-state energy, which happens in the sector
g1 = g2 = . . . = gL/2 = 1. This gap is proportional to the surface energyf∞ of the related
(S, S ′) = ( 1

2, 1) Heisenberg chain. This produces the interesting feature that the correlation
functions of operators which commute with (26) will have a power-law decay with exponents
like those of the periodic( 1

2, 1)-Heisenberg chain, while correlations of non-commuting
operators may exhibit an exponential decay, with rate proportional tof∞. An example of
such operators isσ z

k σ+
k σ−

l wherek and l are indices inside a given rectangle in figure 2(b)
andσ± = σx ± iσy . Apart from these pathological correlations most of them will be of the
same nature as those of the(S, S ′) = ( 1

2, 1) Heisenberg model and our results of section 3
indicate that they are described by a Gaussian-like field theory in the regime 1> 1 > −1.

5. Conclusions

Anisotropic quantum chains with one kind of spinS exhibit a critical phase with
continuously varying exponents governed by ac = 1 Gaussian-like conformal field theory.
This phase starts at the ferromagnetic point1 = 1 with an endpoint at1 = 1c(S), which
for half-odd-integerS is expected to be 1 and1c(S) > −1 otherwise. This means that
the antiferromagnetic point has quite different physics depending on the parity of 2S. In
this paper we analyse anisotropic Heisenberg chains with two kinds of exchange-coupled
centres. Due to a non-compensation effect, these models show ferrimagnetism instead of
antiferromagnetism. As we change the anisotropy we move from the ferromagnetic(1 = 1)

to the ferrimagnetic(1 = −1) point. We studied, by finite-size calculations and conformal
invariance, four models of this kind; the(S, S ′)-mixed Heisenberg chains with(S, S ′) =
( 1

2, 1) and (S, S ′) = ( 1
2, 3

2), given in equation (1) and the Heisenberg models with XXZ
interactions in the lattices of figures 2(a) and (b) (modelsABC andAB2). We calculated the
bulk and surface exponents of the first two models and the bulk exponents of the last two.

All the models we studied show the universal feature of having a critical phase for
1 > 1 > −1 with long-distance physics governed by ac = 1 Gaussian-like conformal field
theory. The critical exponents, along this phase, are model-dependent continuous functions
of the anisotropy. The sound velocity and compactification radius of the Gaussian theory
go to zero at the isotropic ferromagnetic(1 = 1) and ferrimagnetic(1 = −1) points. This
reflects the fact that at both points we should expect the appearance of quadratic dispersion
relations. We strongly believe that this is the general scenario for arbitrary Heisenberg
chains showing ferrimagnetism instead of antiferromagnetism.
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[12] Blöte H, Cardy J L and Nightingale M 1986Phys. Rev. Lett.56 742

Affleck I 1986 Phys. Rev. Lett.56 746
[13] Kadanoff L and Brown A C 1979Ann. Phys., NY121 318
[14] Alcaraz F C, Barber M N, Batchelor M T, Baxter R J and Quispel G R W 1987J. Phys. A: Math. Gen.20

6397
[15] Alcaraz F C, Baake M, Grimm U and Rittenberg V 1989J. Phys. A: Math. Gen.22 L5
[16] Hamer C J and Barber M N 1981 J. Phys. A: Math. Gen.14 2009
[17] van den Broeck J M and Schwartz L W 1979SIAM J. Math. Anal.10 658
[18] See, e.g. Barber M N 1983 Phase Transitions and Critical Phenomenavol 8, ed C Domb and J L Lebowitz

(New York: Academic) p 145
[19] Baxter R J 1982Exactly Solved Models in Statistical Mechanics(New York: Academic)
[20] Drillon M, Gianduzzo J C and Georges R 1983Phys. Lett.96A 413

Drillon M, Coronado E, Georges R, Gianduzzo J C and Curely J 1989Phys. Rev.B 40 10992
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